当前位置:首页 » 新闻资讯 » 行业动态

快速批量制备高质量石墨烯研究取得进展

来源: 编辑: 人气:850 时间:2012-01-18

  氢能是一种理想的能源载体,开发大规模、廉价、清洁、高效的制氢技术是氢能有效利用的关键。电解水由于环境友好、产品纯度高以及无碳排放而成为具有应用前景的绿色制氢方法之一。限制电解水制氢大规模应用的好重要瓶颈是如何大幅降低其电能消耗,因而大幅降低制氢成本。其关键是如何有效降低电极上析氧反应(OER)和析氢反应(HER)的过电位,实现在低槽压下的大电流产氢。因此,发展廉价、易制备的高效电解水催化剂备受关注。

  在国家自然科学基金委、科技部和中国科学院战略性先导科技专项的支持下,中科院化学研究所分子纳米结构与纳米技术重点实验室研究员胡劲松课题组科研人员在氢能的清洁获取与应用研究方面开展了系列研究。好近,他们针对电解水过程中阳极析氧反应比动力学缓慢、过电位高的问题,研究发现通过对原本活性不高但制备过程环境友好的析氧催化剂进行微观形貌以及电子结构的调控,可以大幅提升其电催化析氧活性与稳定性,为拓展电解水电极材料的选择提供了另一种途径。他们研究发现硼酸镍(II)纳米催化剂的电催化析氧性能与其结晶度密切相关,并通过调控其结晶度,S次获得了OER性能优异的新型硼酸镍(II)析氧电催化剂(图1)。这一通过调控电催化剂结晶程度来精细调控电催化剂性能的研究结果为开发新型低成本、高效电催化剂提供了崭新的思路。相关研究结果于近期发表在Angew. Chem. Int. Ed. 2017, 56, 6572上,并被《物理化学学报》以highlight形式报道。

  此外,碱式碳酸盐制备方法简单、经济、环保,但其电催化分解水的性能不佳。科研人员近日研究发现通过向碱式碳酸钴中引入锰,实现对其微观形貌和电子结构的双重调控,可以大幅度提升其电催化分解水性能,使原本没美国特诺(科美基)钛白粉TRONO有应用前景的碱式碳酸盐类材料成为可与好近报道的高性能硫化物、磷化物等媲美的、可在大电流下工作的新型双功能全水分解电催化剂(图2)。这一研究不仅拓宽了低成本高效电解水催化剂的选择范围,而且有助于理解催化剂的构效关系,为开发新型、环境友好、可实际工作的高效低成本电催化剂提供了新的思路。相关研究结果发表在J. Am. Chem. Soc. 2017, 139, 8320上。

Chinese Academy of Sciences to develop a new type of highly efficient electrolysis of water catalyst

Hydrogen energy is an ideal energy carrier. Developing large-scale, cheap, clean and efficient hydrogen production technologies is the key to the efficient use of hydrogen. Electrolysis water is one of the promising green hydrogen production methods because of its environmental friendliness, high product purity and non-carbon emission. The most important bottleneck to limiting the large-scale use of electrolyzed water to hydrogen production is how to drastically reduce its electrical energy consumption, thereby drastically reducing hydrogen production costs. The key point is how to effectively reduce the over-potential of oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) on the electrode, and achieve high-current hydrogen production under low cell pressure. Therefore, the development of cheap, easy to prepare and efficient electrolysis of water catalyst has drawn much attention.

Supported by the National Natural Science Foundation of China, the Ministry of Science and Technology and the Strategic Pilot Science and Technology Project of the Chinese Academy of Sciences, researchers at the Key Laboratory of Molecular Nanostructures and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, A series of studies on clean acquisition and applied research. Recently, in order to solve the problem that the anodic oxygen evolution reaction is slow and the overpotential is high during the electrolysis of water, the authors found that by controlling the morphology and electronic structure of the oxygen evolution catalyst which is not active enough but has an environmentally friendly preparation process, Can greatly enhance its electrocatalytic oxygen evolution activity and stability, to expand the choice of electrolysis water electrode material provides another way. They found that the electrocatalytic oxygen evolution performance of the nickel (II) borate nanocatalyst is closely related to its crystallinity, and for the first time a new nickel oxyhalide (II) oxygen evolution electrocatalyst with excellent OER performance was obtained (Figure 1) . The results of the study on the fine control of the electrocatalyst performance by controlling the degree of crystallization of the electrocatalyst provide a new idea for the development of a new type of low cost and high efficiency electrocatalyst. Relevant findings have recently been published in Angew. Chem. Int. Ed. 2017, 56, 6572 and are reported by highlight in the Journal of Physical Chemistry.

In addition, the preparation method of basic carbonate is simple, economical and environmentally friendly, but its performance of electrocatalytically decomposing water is not good. Researchers recently found that by introducing manganese into the basic cobalt carbonate to achieve dual regulation of its micro-morphology and electronic structure, can greatly enhance the performance of its electrocatalytic decomposition of water, so there is no prospect of basic carbonate The material becomes a new dual-function fully hydrolyzed electrocatalyst that can work at high currents, comparable to the recently reported high-performance sulfides, phosphides and the like (Figure 2). This research not only broadens the selection of low cost and high efficiency electrolyzed water catalysts, but also helps to understand the structure-activity relationship of catalysts and provides a new idea for the development of new, environmentally friendly and practical low-cost electrocatalysts. Relevant findings are published in J. Am. Chem. Soc. 2017, 139, 8320.

TAG:
凯茵化工公众号

【版权声明】秉承互联网开放、包容的精神,凯茵化工欢迎各方(自)媒体、机构转载、引用我们原创内容,但要注明来源凯茵化工;同时,我们倡导尊重与保护知识产权,如发现本站文章存在版权问题,请将版权疑问、授权证明、版权证明、联系方式等,发邮件至 app@shkingchem.com,我们将第一时间核实、处理,感谢您的配合。

【版权声明】秉承互联网开放、包容的精神,凯茵化工欢迎各方(自)媒体、机构转载、引用我们原创内容,但要注明来源凯茵化工;同时,我们倡导尊重与保护知识产权,如发现本站文章存在版权问题,请将版权疑问、授权证明、版权证明、联系方式等,发邮件至 app@shkingchem.com,我们将第一时间核实、处理,感谢您的配合。

点击/扫码填问卷